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Abstract

In Ndogmo (2008 J. Phys. A: Math. Theor. 41 025207), the author claims
to have determined a complete list of functionally independent differential
invariants up to order 2 for the equivalence group of differential equations
defined by vector fields when there are two and three independent variables. In
this comment, we show that this is not the case. Using the equivariant moving
frame method, we derive a complete set of functionally independent differential
invariants of orders 1 and 2 for an arbitrary number n � 2 of independent
variables. In the particular case n = 2, we obtain six functionally independent
invariants, two of which were not found in Ndogmo (2008 J. Phys. A: Math.
Theor. 41 025207). In the case n = 3, we get 21 functionally independent
invariants, six of which are new. We also give a complete classification of the
differential invariants.

PACS number: 02.20.Tw
Mathematics Subject Classification: 58A20, 58H05, 58J70

1. Introduction

In 1998 and 1999, Fels and Olver developed the theory of equivariant moving frames
for Lie groups [3, 4]. Recently, their work has been generalized to Lie pseudo-groups
[7–9]. As for finite dimensional Lie groups, the equivariant moving frame method for Lie
pseudo-groups gives all functionally independent differential invariants of a pseudo-group
action, and establishes the recurrence relations between invariantly differentiated invariants
and normalized invariants, [8, 9]. It can also be used to derive the structure equations of
Lie pseudo-groups, [7]. The first extensive application of this new theory can be found in
[1, 2]. In those two papers, the structure equations for the symmetry pseudo-group of the
Kadomtsev–Petviashvili equation and the classification of the differential invariants is carried
out in complete detail.
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The computation of differential invariants of a symmetry group using Lie’s approach
requires the integration of a linear system of partial differential equations [6]. With the
equivariant moving frame method, differential invariants are derived using only differentiation
and solving algebraic equations. Since algebraic equations are usually easier to solve than
differential equations, the equivariant moving frame approach frequently gives the differential
invariants with less work compared to Lie’s approach. This is particularly true for the problem
we are concerned with in this paper. In [5], the author uses Lie’s approach to derive some of the
differential invariants of orders 1 and 2 for the equivalence pseudo-group of transformations
for differential equations defined by a vector field

n∑
i=1

ai(x)∂xi u(x) = 0, x = (x1, . . . , xn), (1)

when there are two and three independent variables. The derivation takes a total of about
seven pages. With the equivariant moving frame method the same computation, for an
arbitrary number n � 2 of independent variables, is done in one page.

The purpose of this paper is not just to illustrate how the equivariant moving frame method
can reduce the amount of computations when it comes to determining the differential invariants
of a Lie pseudo-group, but to also address some errors found in [5]. In theorem 6 of [5], the
author claims to have found all differential invariants, up to order 2, for the pseudo-group of
equivalence transformations of (1) when there are two and three independent variables, but
we show that this is not the case. Using the equivariant moving frame technic we establish
a complete set of functionally independent differential invariants of (1), up to order 2, for an
arbitrary number n � 2 of independent variables. In the cases n = 2, 3 we show that we have
found more functionally independent invariants than in [5]. Furthermore, the conjecture of [5]
on page 12 is false. The conjecture is based on the wrong number of functionally independent
invariants of orders 1 and 2 derived by the author when n = 2, 3, and on an unjustified quantity
Wn at the top of page 12. The conjecture must be replaced by our proposition 5.

The paper is divided as follows. In section 2 we start by giving an outline of the
equivariant moving frame theory, then in section 3 we summarize the equivalence problem
for the differential equation (1) discussed in [5]. Using the method of equivariant moving
frames we derive all functionally independent invariants up to order 2 for the equivalence
pseudo-group in section 4, and we finish the paper by studying the ‘algebra’ of differential
invariants.

2. Equivariant moving frame theory

For a detailed exposition of the equivariant moving frame theory for Lie pseudo-groups we
refer the reader to [8, 9]. In this section we state the important results without proofs.

2.1. Normalized invariants

Let M be a smooth manifold of dimension m. Let J n(M,p) be nth jet bundle of equivalence
classes of p-dimensional submanifolds S of M with nth order contact. We choose local
coordinates on M

z = (z1, . . . , zm) = (x1, . . . , xp, u1, . . . , uq) = (x, u), p + q = m,

so that the submanifold S can be expressed as the graph of smooth functions uα = f α(x), α =
1, . . . , q. Local coordinates on J n(M,p) are given by jn

z S = (x, u(n)), where u(n) denotes
all derivatives u with respect to the variables x up to order n. We denote by D(M) the
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pseudo-group of all local diffeomorphisms of M. For 0 � n � ∞, let D(n) → M be
the subbundle of J n(M,M) consisting of the nth order jets jnψ of local diffeomorphisms
ψ : M → M . Local coordinates on D(n) are given by jn

z ψ = (x, u,X(n), U(n)), where
z = (x, u) ∈ M are the source coordinates, Z = (X,U) ∈ M the target coordinates and
Xi

A = ∂#AXi/∂zA, i = 1, . . . , p, Uα
A = ∂#AUα/∂zA, α = 1, . . . , q, 1 � #A � n, are the

derivatives of the target coordinates with respect to the source coordinates. The jet coordinates
Xi

A,Uα
A are to be viewed as representing the group parameters of the diffeomorphism pseudo-

group D. The right action of D on D(n) is defined by

Rψ

(
jn
z φ

) = jn
ψ(z)(φ ◦ ψ−1),

when the composition φ ◦ ψ−1 is defined.

Definition 1. A Lie pseudo-group G is a sub-pseudo-group of D(M) whose diffeomorphisms
are local solutions of an involutive system of defining partial differential equations

F(x, u,X(n), U(n)) = 0. (2)

The pseudo-group G acts on the submanifold jet bundle J n(M,p) by mapping the
submanifold jet jn

z S = (x, u(n)) to the target jet ψ |z ·jn
z S = jn

ψ(z)ψ(S) = (X, Û (n)), ψ ∈ G. A
hat is added over the transformed jet coordinates to distinguish them from the diffeomorphism
jet coordinates Uα

A . The local expressions for Û (n) are given by

Ûα
J = DXj1 · · · DXjk U

α, 0 � k = #J � n, α = 1, . . . , q, (3)

where

DXi =
p∑

j=1

W
j

i Dxj , with
(
W

j

i

) = (Dxj Xi)−1, i = 1, . . . , p, (4)

and Dxi is the total differential operator with respect to xi .
The pseudo-group jet G(n) and the submanifold jet J n(M,p) are put together in the

bundle H(n) → J n(M,p) obtained by taking the pull-back of G(n) → M along the usual jet
projection πn : J n(M,p) → M . The local coordinates on H are given by the pair of jets(
jn
z S, jn

z φ
)
, S ⊂ M,φ ∈ G. The pseudo-group G acts on H by

ψ |z · (
jn
z S, jn

z φ
) = (

jn
ψ(z)ψ(S), jn

ψ(z)(φ ◦ ψ−1)
)
. (5)

From (5) it follows that the target jet coordinates ψ |z · jn
z S = (X,U(n)) are invariant under

the action of G.

Definition 2. An nth order moving frame for a pseudo-group G acting on p-dimensional
submanifolds of M is a G-equivariant local section ρ(n) : J n(M,p) → H(n).

The G-equivariance of the section means that

ρ(n)(ψ |(x,u) · (x, u(n))) = ρ(n)(x, u(n))
(
jn
(x,u)ψ

)−1
, ψ ∈ G,

when all products are defined.
An nth order moving frame exists in a neighborhood of a jet (x, u(n)) if and only if G acts

locally freely at (x, u(n)) and the action is regular. In applications, a moving frame ρ(n) is
obtained in three steps. First compute the prolonged pseudo-group action (3):

(X, Û (n)) = P (n)(x, u(n), g(n)), (6)

which will depend on rn pseudo-group parameters g(n). Then set rn of the coordinate functions
(6) to be constant valued

Pν(x, u(n), g(n)) = cν, ν = 1, . . . , rn, (7)

3
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so as to form a cross-section of the pseudo-group orbits. Finally, solve the normalization
equations (7) with respect to the pseudo-group parameters g(n),

g(n) = h(n)(x, u(n)). (8)

Once this is done, the nth order moving frame ρ(n) is given by ρ(n)(x, u(n)) = (x, u(n), h(n)

(x, u(n))).
The invariance of the target jet coordinates (X, Û (n)) under the pseudo-group action and

the definition of a moving frame ρ(n) imply

Proposition 1. The normalized differential invariants

Hi(x, u(n)) = (ρ(n))∗(Xi) = ι(xi) = Xi(x, u(n), h(n)(x, u(n))),

I α
J (x, u(n)) = (ρ(n))∗

(
Uα

J

) = ι
(
uα

J

) = Ûα
J (x, u(n), h(n)(x, u(n))),

(9)

i = 1, . . . , p, α = 1, . . . , q, 0 � #J � n, obtained by replacing the pseudo-group parameters
in (6) by (8), form a complete set of functionally independent differential invariants of the nth
prolonged pseudo-group action G(n).

In (9), rn of the normalized invariants are constant due to the normalization equations (7).
Those invariants are called phantom invariants and the other are referred to as non-phantom
invariants.

2.2. Recurrence formulae

From the p differential operators (4) and a moving frame ρ(∞) we derive p independent
invariant differential operators

Di =
p∑

j=1

(
(ρ(∞))∗

(
W

j

i

))
Dxj , i = 1, . . . , p. (10)

Applying the invariant differential operators (10) to the normalized differential invariants
(9), with n = ∞, gives new differential invariants that can be expressed in terms of the
normalized invariants (9) since they constitute a basis of the algebra of differential invariants
for the Lie pseudo-group G. Those relations are called recurrence relations. Before writing
out the recurrence formulae we recall some facts about the infinitesimal generators of a Lie
pseudo-group G. A vector field

v =
p∑

i=1

ξ i(x, u)∂xi +
q∑

α=1

φα(x, u)∂uα (11)

is an infinitesimal generator of G if it is the solution to the infinitesimal determining equations

L(x, u, ξ (n), φ(n)) = 0, (12)

obtained by linearizing the defining equations (2) of the Lie pseudo-group G at the identity jet
IM . The nth prolongation of the vector field (11) is given by the usual formula,

v(n) =
p∑

i=1

ξ i(x, u)∂xi +
q∑

α=1

n∑
#J=0

φ̂α
J (x, u(n))∂uα

J
,

where

φ̂α
J (x, u(n), ξ (n), φ(n)) = DJ

(
φα −

p∑
i=1

uα
i ξ i

)
+

p∑
i=1

uα
J,iξ

i . (13)

4
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Note that the prolonged coefficients (13) are linear combinations of the derivatives
ξ i
A, φα

A, #A � #J . Let

ψ̂α
J (H, I (n), β(n), ζ (n)) = ι(̂φα

J (x, u, ξ (n), φ(n))),

be the invariantization of φ̂α
J obtained by the substitutions

xi �→ Hi, uα
J �→ Iα

J , ξ i
A �→ βi

A, φα
A �→ ζ α

A, (14)

where βi
A and ζ α

A are the horizontal components of the invariantized Maurer–Cartan forms
associated with the Lie pseudo-group G, [2]. Since φ̂α

J (x, u(n), ξ (n), φ(n)) are linear in ξ i
A

and φα
A, ψ̂α

J (H, I (n), β(n), ζ (n)) are linear combinations in the one-forms βi
A and ζ α

A . The
differential forms βi

A and ζ α
A are not linearly independent and remarkably satisfy

Proposition 2. The one-forms βi
A, i = 1, . . . , p, and ζ α

A, α = 1, . . . , q, #A � 0, satisfy the
linear relations

L(. . . , H i, . . . , I α, . . . , βi
A, . . . , ζ α

A . . .) = 0, (15)

where L is the completion of the infinitesimal determining equations (12).

The completion L of L consists of the original equations (12) along with all equations
obtained by repeated differentiation. Equations (15) are obtained in two steps, first compute
the completion L then make the substitutions (14). We are now in a position to state

Theorem 1. The recurrence formulae for the normalized differential invariants (9) are
p∑

i=1

(DiH
j )ωi = ωi + βi,

p∑
i=1

(DiI
α
J )ωi =

p∑
i=1

Iα
J,iω

i + ψ̂α
J , (16)

where ωi are invariant one-forms dual to the invariant differential operators Di . Their explicit
expressions are

ωi =
p∑

j=1

((ρ(∞)∗(Dxj Xi))dxj , i = 1, . . . , p.

The terms βi and ψ̂α
J appearing in (16) are called correction terms.

The recurrence relations for the phantom invariants have their left-hand side equal to
zero since these invariants are constant valued. Those equations form a linear system of
equations in βi

A and ζ α
A which can be solved, if a bona fide cross-section is chosen and the

pseudo-group action is locally free at a certain order n. Substituting their expressions in
the recurrence relations for the non-phantom invariants gives explicit relations between the
invariantly differentiated invariants and the normalized invariants of the form

DiI
α
J = Iα

J,i + Rα
J,i ,

where Rα
J,i is an expression of the normalized invariants (9).

3. The pseudo-group of equivalence transformations for a differential equation

defined by a vector field

In [5], the most general pseudo-group of equivalence transformations for a linear scalar
differential equation

n∑
i=1

ai(x)∂xi u(x) = 0, x = (x1, . . . , xn), (17)

5
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defined by the smooth vector field
∑n

i=1 ai(x)∂xi is established. The pseudo-group of
equivalence transformations consists of all local diffeomorphisms

Ox × Ou ⊂ R
n × R → R

n × R,

(x, u) �→ (X = ψ(x, y), U = α(x, u)),

mapping (17) into an equation of the same form
n∑

i=1

Ai(X)∂Xi U(X) = 0,

where the functions Ai(X) can be different from the functions ai(x) appearing in (17). We
assume that all the coefficients ai(x) are nonzero, and also that n > 1 because otherwise the
equivalence problem is trivial. In this setting, we have

Proposition 3. The most general pseudo-group of equivalence transformations of (17) consists
of all local diffeomorphisms of the form

Xi = ψi(x
i), i = 1, . . . , n, (18)

U = u. (19)

Under transformation (18) the vector field
∑n

i=1 ai(x)∂xi is mapped to
∑n

i=1 Ai(X)∂Xi , with

Ai(X) = ψ ′
i (x

i)ai(x), (20)

where ψ ′
i (x

i) denotes the derivative of ψi(x
i) with respect to xi . From (19) it is clear that

the dependent variable u is an invariant of the equivalence problem. We thus ignore this
variable in the search of invariant differential functions, and we are thus interested in finding
the differential invariants of the Lie pseudo-group

G : Xi = ψi(x
i), Ai = ψ ′

i (x
i)ai, i = 1, . . . , n. (21)

The defining equations of this Lie pseudo-group are

Xi
xj = 0, if j 
= i, Ai = Xi

xi a
i, i = 1, . . . , n,

where δi
j is the Kronecker delta.

For future reference we note that the infinitesimal generator of G is given by

v =
n∑

i=1

ξi(x
i)∂xi +

n∑
i=1

aiξ ′
i (x

i)∂ai
, (22)

where ξi(x
i) is an arbitrary smooth function of xi , and ξ ′

i (x
i) denotes the derivative of ξi(x

i)

with respect to xi .

4. Differential invariants

To find the differential invariants of the Lie pseudo-group (21), we apply the algorithm
discussed in section 2.1. We use the multi-index notation ai

J = ∂kai/(∂xj1 · · · ∂xjk ), to denote
the partial derivatives of the vector field coefficients ai, i = 1, . . . , n, with respect to the
coordinates xi, i = 1, . . . , n. The prolonged pseudo-group action of G is found by applying
the differential operators

DXi = 1

ψ ′
i (x

i)
Dxi , i = 1, . . . , n, (23)

6
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where

Dxj = ∂

∂xj
+

n∑
i=1

∑
#J�0

ai
J,j

∂

∂ai
J

, j = 1, . . . , n,

to Ai, i = 1, . . . , n. The first few terms are

Ai
j = DXj Ai = 1

ψ ′
j

(
ai

jψ
′
i + aiδi

jψ
′′
i

)
,

Ai
jk = DXkAi

j = 1

ψ ′
k

[
− δ

j

k ψ
′′
j

(ψ ′
j )

2

(
ai

jψ
′
i + aiδi

jψ
′′
i

)
+

1

ψ ′
j

(
ai

jkψ
′
i + ai

j δ
i
kψ

′′
i + ai

kδ
i
jψ

′′
i + aiδi

j δ
i
kψ

′′′
i

)]
,

...

(24)

1 � i, j, k � n. The pseudo-group parameters ψi, ψ
′
i , ψ

′′
i , . . ., of the prolonged pseudo-group

action are normalized using the cross-section

Xi = 0, Ai = 1, Ai
ik

= 0, i = 1, . . . , n, k � 1, (25)

where Ai
ik

denotes the kth derivative of Ai with respect to Xi . Solving for the pseudo-group
parameters we find

ψi = 0, ψ ′
i = 1

ai
, ψ ′′

i = − ai
i

(ai)2
, . . . , (26)

i = 1, . . . , n. Replacing expressions (26) in the unnormalized target coordinates of (24), i.e.,
in Ai

J , #J = k � 1, with J = (j1, . . . , jk) such that jl 
= i for some l between 1 and k, we get
the differential invariants

I i
j = ι

(
ai

j

) = ai
j a

j

ai
, i 
= j,

I i
jk = ι

(
ai

jk

) = ak

ai

(
δ

j

k a
j

j

(
ai

j − δi
j a

i
i

)
+

aj

ai

(
aiai

jk − δi
ka

i
j a

i
i − δi

j a
i
ka

i
i

))
, (j, k) 
= (i, i),

... (27)

The invariants I i
j , I

i
jk of (27) are all functionally independent and give a complete list of

invariants for the second prolonged pseudo-group action G(2).
We now specify the above results to the cases where there are n = 2 and n = 3 independent

variables.

Proposition 4. Let N n be the maximal number of functionally independent differential
invariants of orders 1 and 2 in n independent variables.

(i) For n = 2,N 2 = 6, and the invariants are

I i
j = ai

j a
j

ai
, I i

ij = ajai
ij − aj

ai
ai

j a
i
i , I i

jj = aj

ai
a

j

j a
i
j +

(aj )2

ai
ai

jj , (28)

with i, j ∈ {1, 2} and i 
= j .
(ii) For n = 3,N 3 = 21, and the invariants are

I i
j = ai

j a
j

ai
, I i

ij = ajai
ij − aj

ai
ai

j a
i
i ,

I i
jj = aj

ai
a

j

j a
i
j +

(aj )2

ai
ai

jj , I i
jk = akajai

jk

ai
,

(29)

with i, j, k ∈ {1, 2, 3}, i 
= j, k, and j 
= k.

7
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Theorem 6 of [5] must be replaced by our proposition 4 above since our list of invariants
is more exhaustive. Indeed, for the case n = 2, the author of [5] finds four independent
differential invariants of orders 1 and 2:

Tij = ai
j a

j

ai
, Kij = ai

jj a
j

ai
j

+ a
j

j ,

with i, j ∈ {1, 2}, and i 
= j . Those four invariants are related to the four invariants I i
j , I

i
jj of

(28) by the relations

I i
j = Tij , I i

jj = KijTij .

So the two new invariants in the list (28) are I i
ij , with i, j = 1, 2, and i 
= j .

In the case n = 3, 15 independent differential invariants of orders 1 and 2 are found in
[5]:

Tij = ai
j a

j

ai
, Kij = ai

jj a
j

ai
j

+ a
j

j , Lijk = ai
jk

(
ajak

ai

)
,

with i, j, k ∈ {1, 2, 3}, i 
= j, k, and j 
= k. Those 15 invariants are related to the 15 invariants
I i
j , I

i
jj , I

i
jk of (29) by the relations

I i
j = Tij , I i

jj = KijTij , I i
jk = Lijk.

So the six new invariants in the list (29) are I i
ij , with i, j = 1, 2, 3, and i 
= j .

For a general number n � 2 of independent variables, since there are
(
n+k−1

k

)
different

kth order derivatives for a scalar function depending on n variables, it follows that there
are

(
nn+k−1

k

)
different target coordinates Ai

J , i = 1, . . . , n, with #J = k in (24). Since our
cross-section (25) imposes that Ai

ik
= 0, i = 1, . . . , n, for k � 1 it follows that there are

Mk
n = n

(
n + k − 1

k

)
− n, k � 1,

functionally independent invariants of order k. Hence we have proven.

Proposition 5. For any value n � 2 of independent variables, the number of functionally
independent differential invariants of the second prolongation G(2) is

N n = M1
n + M2

n = n(n − 1) +
n2(n + 1)

2
− n = n2(n + 3)

2
− 2n,

and a basis of such invariants is given by (27).

The conjecture on page 12 of [5] is false, and must be replaced by our proposition 5. As
mentioned in the introduction, the conjecture is false since it relies on the wrong number of
invariants found by the author for the cases n = 2, 3, and the unjustified quantity Wn defined
at the top of page 12.

5. Algebra of differential invariants

In this section we give a complete classification of the differential invariants for a generic
vector field

∑n
i=1 ai(x)∂xi .

As discussed in section 2.2, from (23) we obtain n invariant differential operators

Di = aiDxi , i = 1, . . . , n, (30)

by replacing ψ ′
i in (23) by its normalization ψ ′

i = 1/ai .

8
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To find the correction terms in the recurrence relations (16) we must first compute the
prolongation of the vector field (22). The first terms are

φ̂i
j = ai

j (ξ
′
i − ξ ′

j ) + δi
j a

iξ ′′
i ,

φ̂i
jk = ai

jk(ξ
′
i − ξ ′

j − ξ ′
k) +

(
δi
ka

i
j + δi

j a
i
k

)
ξ ′′
i − δ

j

k a
i
j ξ

′′
j + δi

j δ
i
ka

iξ ′′′
i ,

...

(31)

The correction terms ψ̂ i
J = ι

(
φ̂i

J

)
are obtained by making the substitution

xi �→ Hi, ai
J �→ I i

J

ξi �→ βi ξ ′
i �→ βi

Xi = βi
1, . . . ,

dkξi

d(xi)k
�→ βi

(Xi)k
= βi

k, . . . ,

i = 1, . . . , n, in (31). We note that the one-forms βi
k are all functionally independent. This

follows from the fact that the functions ξi and their derivatives are functionally independent.
Using the recurrence relations for the phantom invariants ι(xi) = 0, ι(Ai) = 1, ι

(
Ai

ik

) =
0, k � 1, i = 1, . . . , n, we find the explicit expressions for the one-forms βi

k:

0 = ωi + βi ⇒ βi = −ωi,

0 =
∑
j 
=i

I i
jω

j + βi
1, ⇒ βi

1 = −
∑
j 
=i

I i
jω

j ,

0 =
∑
j 
=i

I i
ijω

j + βi
2, ⇒ βi

2 = −
∑
j 
=i

I i
ijω

j ,

...

0 =
∑
j 
=i

I i
ik−1j

ωj + βi
k, ⇒ βi

k = −
∑
j 
=i

I i
ik−1j

ωj ,

(32)

i = 1, . . . , n, where I i
ikj

is the invariant I i
i,i,...,i,j with ki’s as subscripts.

Substituting expressions (32) in the recurrence relations for the first-order non-phantom
invariants we find

n∑
i=1

DiI
j

k ωi =
n∑

i=1

I
j

kiω
i + I

j

k

⎛⎝∑
i 
=j

I
j

i ωi −
∑
i 
=k

I k
i ωi

⎞⎠ , j 
= k.

By induction on the order of the prolonged vector field coefficients (31) we see that the
correction terms ψ̂ i

J with at least one jl 
= i involves only terms in βi
j with j � #J − 1. From

(32), we conclude that the correction terms for the recurrence relations of the non-phantom
invariants of order #J � 1 depend on non-phantom invariants of order at most #J . Hence any
normalized invariant I i

J,j of order #J + 1 can be written as

I i
J,j = Dj I

i
J + Ri

J,j , #J � 1, 1 � i, j � n,

where Ri
J,j depends on normalized invariants of order at most #J . Base on those considerations

we conclude that the first-order differential invariants I i
j , i, j = 1, . . . , n, i 
= j , generate the

algebra of differential invariants of the equivalence pseudo-group (21).
For a generic vector field

∑n
i=1 ai(x)∂xi , the number of first-order differential invariants

generating the algebra of differential invariants can be greatly reduced using the commutation

9
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relations between the invariant differential operators (30). By direct computation

[Dj ,Dk] = [
ajDxj , akDk

x

] = I k
j Dk − I

j

k Dj . (33)

Under the assumption that the two normalized invariants I
io
jo

, and I
jo

io
, io 
= jo, with io, jo fixed,

satisfy

det

(
DlI

io
jo

DkI
io
jo

DlI
jo

io
DkI

jo

lo

)

= 0, (34)

for all (k, l) 
= (io, jo) or (k, l) 
= (jo, io), k 
= l, we can reduce the generating set of invariants
to I

io
jo

and I
jo

io
. Indeed the assumption (34) implies that we can solve the linear system(

[Dk,Dl]I
io
jo

[Dk,DI ]I jo

io

)
=

(
DlI

io
jo

DkI
io
jo

DlI
jo

io
DkI

jo

io

) (
I l
k

−I k
l

)
,

(k, l) 
= (i, j) or (k, l) 
= (j, i), k 
= l, for I k
l and I l

k in terms of I
io
jo

, I
jo

io
and their invariant

derivatives. An explicit computation of the determinants appearing in (34) using (30) and (27)
confirms that the determinants are not identically zero for a generic vector field

∑n
i=1 ai(x)∂xi .

If furthermore

Djo
I

io
jo


= 0, (35)

which holds for a generic vector field, we can use the commutation relation (33) for Dio and
Djo

to write

I
jo

io
= 1

Djo
I

io
jo

([
Dio ,Djo

]
I

io
jo

+ I
io
jo
Dio I

io
jo

)
.

Hence for a generic vector field
∑n

i=1 ai(x)∂xi , we conclude that all differential invariants of
the equivalence pseudo-group (21) can be expressed in terms of the single invariant I io

jo
, io 
= jo,

and its invariantly differentiated consequences Dj1 · · ·Djk
I

io
jo

, 1 � j1, . . . , jk � n, k � 1.
For non-generic vector fields , some of the non-degeneracy conditions (34) and (35)

might not hold. The problem then splits in many different sub-cases, depending on which
determinants in (34) are identically zero and if the assumption (35) holds. But in most sub-
cases we can still use the commutator relations (33) to reduce the generating set of first-order
differential invariants

{
I i
j : i 
= j

}
to a subset of itself.
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